
PATTERNS OF INHERITANCE

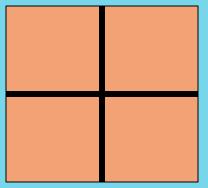
What are the different ways traits can be inherited?

REVIEW: PATTERNS OF INHERITANCE WE KNOW ALREADY

- <u>1. Autosomal dominant</u>: If an individual is heterozygous, only one allele is active. The recessive allele is inactive (does not produce a working protein).
 - Traits with genes NOT on sex chromosomes.
- Ex:

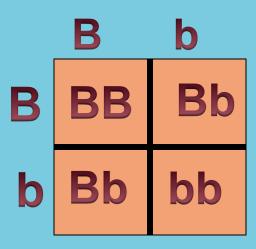
Homozygous brown eyes x Homozygous blue eyes – SET UP A PUNNETT SQUARE!

AUTOSOMAL DOMINANT EXAMPLE Ex: Homozygous brown eyes (BB) x homozygous blue eyes (bb) SET UP A PUNNETT SQUARE! B B


b Bb Bb b Bb Bb

-What is the phenotype seen in the offspring?

ANSWER: Brown eyes

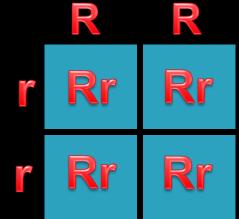

REVIEW: PATTERNS OF INHERITANCE WE KNOW ALREADY

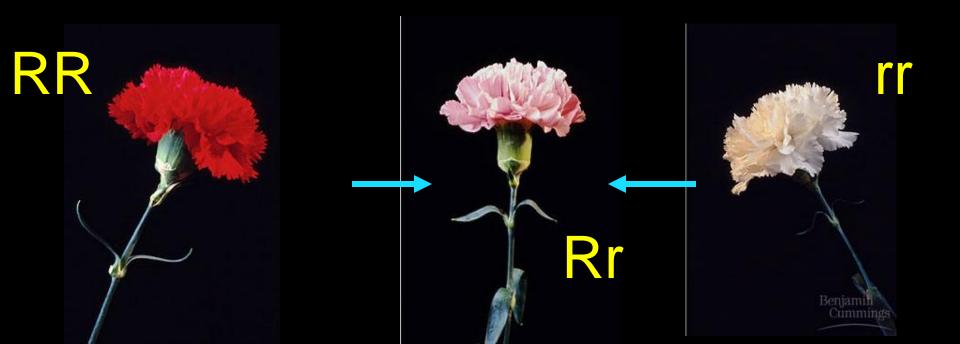
- 2. Autosomal recessive: If an individual is homozygous recessive both alleles are inactive; therefore, the recessive trait is seen as the phenotype. Both alleles are inactive.
 - Traits with genes NOT on sex chromosomes.
 - Ex: Cross 2 parents heterozygous for brown eyes. SET UP A PUNNETT SQUARE!

AUTOSOMAL RECESSIVE EXAMPLE

 Ex: Cross 2 parents heterozygous for brown eyes. SET UP A PUNNETT SQUARE!

- –Will any of the offspring have the blue eyes for a phenotype?
 - ANSWER: Yes! bb = blue eyes


3. Incomplete Dominance:


One allele is not dominant over the other allele for a trait.

- You know a trait follows the incomplete dominance pattern when:
 - -There are 3 possible phenotypes instead of 2.
 - -The 3rd phenotype is a **blend** of the other 2 phenotypes.

INCOMPLETE DOMINANCE EXAMPLE: CARNATIONS Ex: red carnation x white carnation produces pink carnations

- Alleles: R = red, r = white
- Genotypic cross = RR x rr
- SET UP A PUNNETT SQUARE!

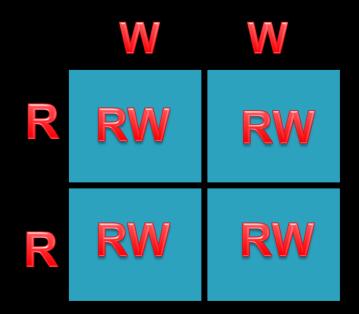
- 4. Codominance: The alleles for a trait are different & both are active.
- <u>Both alleles are seen</u> in the phenotype of heterozygous individuals.

White cow (WW)

Red cow (RR)

Show this cross with a Punnett Square!

Red & White (RW) offspring


4. Codominance:

Show this cross with a Punnett Square! White cow (WW)

Red cow (RR)

Red & White (RW) offspring

CODOMINANCE (WITH A TWIST)... BLOOD TYPES!

- Blood type alleles follow different patterns of inheritance
 - \rightarrow There are <u>3</u> alleles for human blood type: **A**, **B**, **O**.
 - → A and B alleles are codominant
 - \rightarrow O allele is **recessive**
 - Blood type depends on genotype:

Blood Type	Genotype
Туре А	I ^A I ^A or I ^A i ^O
Type B	I ^B I ^B or I ^B i ^O
Type AB	I A I B
Туре О	j0j0

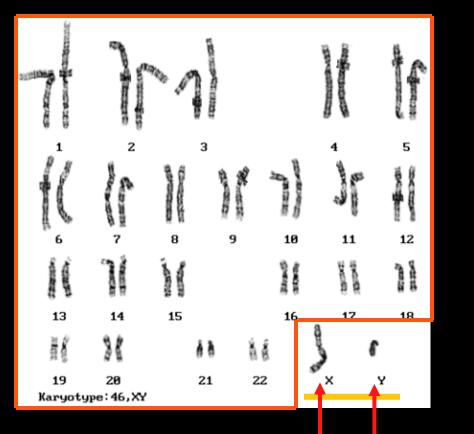
if your blood type is . . .

Туре	You Can Give Blood To	ood To You Can Receive Blood From			
A+	A+ AB+	A+ A- O+ O-			
0+	O+ A+ B+ AB+	0+ 0-			
B+	B+ AB+	B+ B- O+ O-			
AB+	AB+	Everyone			
A-	A+ A- AB+ AB-	A- 0-			
0-	Everyone	O -			
B-	B+ B- AB+ AB-	B- O-			
AB-	AB+ AB-	AB- A- B- O-			

∀B- ∀- B- O-B- O- Example: What are possible genotypes & phenotypes of the children born to a mother having the genotype I^{AiO} and a father with the phenotype AB?

- Set up a Punnett Square!
- Genotypes?
 __IAIA, IAiO, IAIB, IBiO
- Phenotypes?
 –Type A, Type AB, Type B

	r IA	io	
Α	AA	IA jO	
-	Туре А	Туре А	
B	AB	B iO	
	Туре АВ	Туре В	


A new vocabulary term before we move onto determining Gender and Sex-Linked Traits...

Karyotype: map of an individual's chromosomes.

- Pictures of homologous chromosomes are arranged and numbered by size, from largest to smallest.

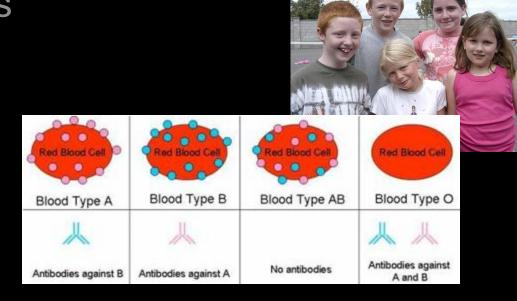
de la constante						An anna an
1	2		3		4	5
	Line yan	Station of the	and the second	exter:	採問	
6	7	8	9	10	11	12
				() Alle Seatt	100 M	
13	14	15		16	17	18
3	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8	66		
19 Karyoty	20 jpe:46,XX		21	22	×	Y

In humans, how is gender determined?
Gender is determined by the sex chromosomes!
> Chromosome Pair #23 are the "sex chromosomes"

For pair 23, MALES have one X chromosome and one Y chromosome

2 з 5 ALCOLOGICAL STREET 町大学校 经产销 Sec. 19 7 9 11 8 10 12 Contractor Contractor 33 日日日 梢 15 13 14 16 17 18 角菌 19 20 21 22 Y Karyotype:46,XX

FEMALES have two X chromosomes


Determining Gender:


- I. All eggs carry X chromosomes but 1/2 of sperm carry X's and 1/2 carry Y's. <u>The father</u> <u>determines gender of</u> <u>the baby!</u>
- II. Y is smaller than X. <u>Some traits on X have</u> <u>no matching gene on Y</u>. *Males have only <u>one</u> gene for those traits, not two* (as they do for all other traits).

What are the chances of any couple having a baby No matching gene girl for traits found here $\mathbf{br} 50^{\circ}$

<u>Autosomal traits</u>: traits with genes on chromosomes 1-22. Ex: Blood type, hair color.



5. Sex-linked (X-linked) traits: traits with genes on the part of the X that has no matching gene on the Y.
Ex: Color blindness, hemophilia, muscular dystrophy.

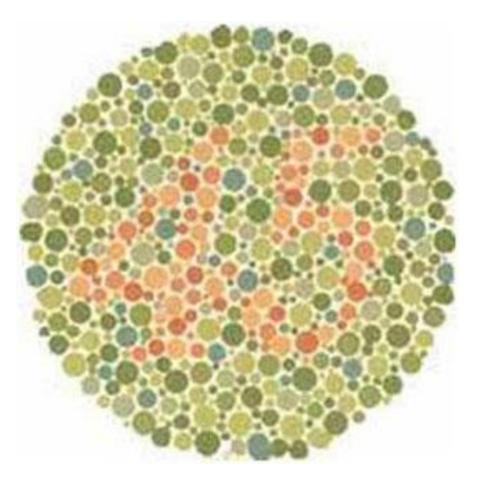
There are many kinds of color-blindness. The sex-linked form is **red-green** color blindness.

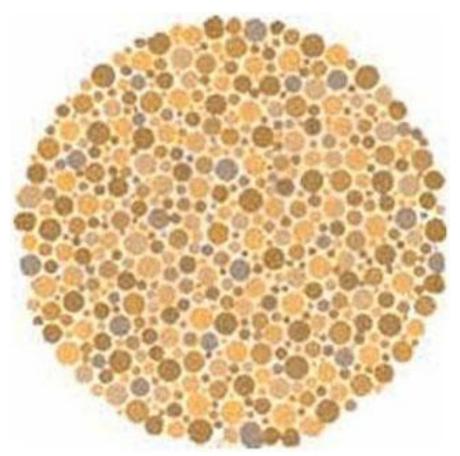
Spectrum with normal color vision...

and as it appears with redgreen colorblindness.

Dichromatic Vision

Normal

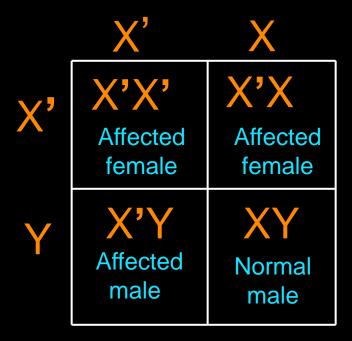

R-G colorblind



Normal

R-G colorblind

Take the test...what do you see?

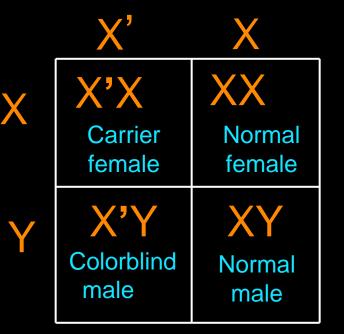

This is what the test looks like to a person who is red-green colorblind.

X-Linked Dominant: DOMINANT trait on the X chromosome.

Females more affected because they have two X chromosomes... more chances to receive the dominant allele.

Example: X'X mom crossed with X'Y dad

X' carries the trait. Set up a Punnett Square:



<u>X-Linked Recessive</u>: RECESSIVE trait on the X chromosome.

MALES more affected because they only have one X chromosome... no chance of receiving the dominant allele to hide the recessive trait.

Example: Colorblindness...

X'X mom crossed with XY dad Both parents have NORMAL vision.

What is the probability of a colorblind male? $\frac{1}{4} = 25\% \text{ X'Y}$ What is the probability of a colorblind female (X'X')? 0%