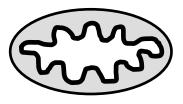

How Organisms Obtain Energy (Part 2)

- The <u>energy</u> that plant and animal cells can use is <u>stored</u> and <u>released</u> by <u>ATP</u> molecules.
- <u>Food</u> that is eaten by animals or made by plants during photosynthesis <u>is</u> <u>the source of energy to make ATP</u>.
 - ★ <u>Cells need the energy in ATP to carry out all activities!!!</u>
- If <u>oxygen</u> is present, then the steps that <u>change energy in food into</u> <u>usable energy</u> for the cell are:
 - 1. Glycolysis
 - 2. Cellular Respiration
 - 2a. Krebs Cycle (Citric Acid Cycle)
 - 2b. Electron Transport Chain
- 1. <u>Glycolysis</u> (Pre-Step to Cellular Respiration or Fermentation)

Where in the cell does glycolysis happen?


Cytoplasm

During glycolysis, 1 molecule of glucose is broken down into 2 molecules of pyruvic acid, 2 molecules of ATP, and 2 molecules of NADH. Only <u>2% of total energy in glucose</u> is captured in the ATP made in this step.

<u>Cellular Respiration</u> is the process that <u>breaks down glucose</u> (or other food molecules) to <u>release energy for cells *if* oxygen is available</u>.
Cellular respiration is <u>also known as aerobic respiration</u>, because it <u>uses oxygen</u>.

Where in a cell does cellular respiration happen? In the <u>mitochondria</u> of animal cells & plant cells.

Glycolysis:

2a. Krebs Cycle

Where in the mitochondria does the Krebs Cycle happen? In the matrix

- During the Krebs Cycle, 2 molecules of pyruvic acid made during

glycolysis each go through 9 reactions to produce the following molecules:

 \circ Carbon Dioxide (CO₂) – leaves the cell as a by-product

0	<u>3 NADH</u>
0	<u>1 FADH₂</u>
0	<u>2 ATP</u>

High energy molecules that are used in the electron transport chain (the next step)

2b. Electron Transport Chain (ETC)

- In this step, \underline{FADH}_2 & \underline{NADH} give <u>high energy electrons</u> to <u>enzymes</u> in the <u>inner membrane</u> of the mitochondria.

The electrons are <u>passed down</u> the <u>electron transport chain</u> until <u>oxygen</u> finally accepts the electrons and <u>water</u> is made.

- <u>Hydrogen (H+) ions</u> build up outside the inner membrane, which causes a difference in electrical charge. This <u>difference in electrical charge</u> is used to <u>change ADP</u> into <u>ATP</u>.

- Together, the Krebs Cycle and ETC produce <u>34</u> ATP molecules.

- Glycolysis + Cellular Respiration (Krebs Cycle + ETC) produce <u>36</u> ATP molecules.

- Lots of chemical energy is produced for the cell \rightarrow <u>a total of 36 ATP</u> <u>molecules for 1 glucose molecule.</u>

Overall Cellular Respiration Reaction (including glycolysis):

Glucose + Oxygen \longrightarrow Carbon Dioxide + Water + Energy <u>C₆H₁₂O₆ + 6 O₂ \longrightarrow 6 CO₂ + 6 H₂O + ATP</u>

If oxygen is not available...

- <u>Anaerobic Respiration</u> – happens when oxygen is NOT available.

- <u>Fermentation</u> releases <u>energy from food molecules</u> by producing ATP <u>without oxygen</u>. <u>Alcoholic fermentation</u> or <u>lactic acid fermentation</u> still use the pyruvic acid made during glycolysis.

	Photosynthesis	Cellular Respiration
Function (job)	Energy storage (makes food)	Energy release
Organism(s)	Plants	Plants and Animals
Location in the cell	Chloroplasts	Mitochondria
Reactants	CO ₂ and H ₂ O	$C_6H_{12}O_6$ and O_2
Products	$C_6H_{12}O_6$ and O_2	CO ₂ and H ₂ O
Equation	$6 \operatorname{CO}_2 + 6 \operatorname{H}_2 \operatorname{O} \longrightarrow$ C ₆ H ₁₂ O ₆ + 6 O ₂	$\begin{array}{c} C_6H_{12}O_6 + 6 O_2 \longrightarrow \\ 6 CO_2 + 6 H_2O + ATP \end{array}$

Comparing Photosynthesis and Cellular Respiration